We are a team of researchers specialized in nanosciences and we aim at building new materials with enhanced optical and mechanical properties.
Our expertise span from the synthesis of the nanoproducts and their self-assembly to their structural characterization.

Latest News
Doping Liquid Crystals of Colloidal Inorganic Nanotubes by Additive-Free Metal Nanoparticles


Doping liquid-crystal phases with nanoparticles is a fast-growing field with potential breakthroughs due to the combination of the properties brought by the two components. One of the main challenges remains the long-term stability of the hybrid system, requiring complex functionalization of the nanoparticles at the expense of their self-assembly properties. Here we demonstrate the successful synthesis of additive-free noble-metal nanoparticles at the surface of charged inorganic nanotubes. Transmission electron microscopy and UV-visible spectroscopy confirm the stabilization of metallic nanoparticles on nanotubes. Meanwhile, the spontaneous formation of liquid-crystals phases induced by the nanotubes is observed, even after surface modification with metallic nanoparticles. Small-angle X-ray scattering experiments reveal that the average interparticle distance in the resulting hybrids can be easily modulated by controlling electrostatic interactions. As a proof-of-concept, we demonstrate the effectiveness of our method for the preparation of homogeneous transparent hybrid films with a high degree of alignment.

Symmetry breaking in seed-mediated silver nanorod growth induced by dimethyl sulfoxide


Engineering symmetry breaking in seed-mediated growth is a fundamental challenge to produce colloidal nanocrystals with controlled morphologies and properties. In this work, we show a simple, aqueous approach to breaking the inversion symmetry of silver nanorods by restricting growth to one end of the pentatwinned gold bipyramid seed. Controlled addition of dimethyl sulfoxide (DMSO) allows us to tune both the symmetry and the length and width of the objects. Simulations and experiments demonstrate the adsorption of DMSO, which displaces interfacial water, reduces binding of surfactant and chloride ions at the gold surface, and slows down the deposition kinetics of silver. Besides showing the potential of DMSO for controlling the synthesis of complex nanostructures, this work opens new perspectives for the study of the physical properties of non-centrosymmetric nanoparticles, e.g. by controlling their plasmon modes and their second-harmonic generation efficiency.

Structure and Formation Kinetics of Millimeter-Size Single Domain Supercrystals



Organizing nanoparticles (NPs) into periodic structures is a central goal in materials science. Despite progress in the last decades, it is still challenging to produce macroscopic assemblies reliably. In this work, we report the analysis of the pervaporation-induced organization of gold octahedra into supercrystals within microfluidic channels using a combination of X-ray scattering techniques and FIB-SEM tomography. The results reveal the formation of a single-domain supercrystal with a monoclinic C2/m symmetry and long-range order extending over the dimensions of the microfluidic channel, covering at least 1.7x0.3 mm2. Time-resolved small angle X-ray scattering analysis showed that the formation of the superlattice involves an accumulation of the NPs within the channel before the nucleation and growth of the supercrystal. The orientation of the crystal remains unchanged during its formation, suggesting a growth mechanism directed by the channel interface. Together, these results show the potential application of the pervaporation strategy to providing spatially determined control over NP crystallization, which can be used for the rational fabrication of nanomaterial architectures.

Sharp Spectral Variations of the Ultrafast Transient Light Extinction by Bimetallic Nanoparticles in




Welcome Samantha!



Samantha Roque earned her Bachelor of Science in Chemistry (2017) and in Materials Science Engineering (2018) from Ateneo de Manila University in the Philippines. She worked on printable carbon composites and biosilica inks for perovskite solar cells under Erwin P. Enriquez, Ph.D. 
She is now doing her master's degree under the Erasmus Mundus Joint Master Degree SERP+. She is at present doing her internship on Anisotropic plasmonic-semiconductor nanocomposites for photocatalytic applications which is a joint project between the “Institut de Chimie Physique” and the “Laboratoire de Physique des Solides” supervised by Cyrille Hamon Ph.D. and ‪Mohamed Nawfal Ghazzal, Ph.D. 

Two-step assembly kinetics of gold nanoparticles



Abstract: We study the assembly kinetics of surfactant-stabilized gold nanoparticles in the presence of sulfate ions. The reaction proceeds in two steps: very rapid (a few minutes) formation of amorphous aggregates, followed by slow reordering (over several hours). The latter process is the only one detectable via absorbance spectroscopy and results in the formation of intimate contacts between the objects, with interparticle distances below the thickness of a surfactant bilayer. The rate-limiting step of the reaction could be related to surfactant expulsion from the initial aggregates, which allows the particles to come in close contact and form chains. There are marked differences in reaction yield and rate constant between spheres, rods and bipyramids, highlighting the role of surface curvature in contact formation. Once formed, the assemblies are very sturdy and stable under centrifugation and dialysis. The contact interaction is strong and highly directional, as shown by liquid-cell transmission electron microscopy.




Happy new year!


Two papers accepted on bimetallic NPs synthesis



Determining the morphology and concentration of
core-shell Au/Ag nanoparticles


Growth kinetics of core-shell Au/Ag nanoparticles


Welcome Wajdi!


Wajdi is a new postdoctoral researcher in the team MATRIX. His interest focuses on self-assembling plasmonic nanoparticles in confinement. The nanostructuration will be resolved at the single supercrystal level using an innovative Small Angle X-ray Scattering (SAXS) setup developed on a synchrotron beamline (SWING, @SOLEIL).

Real-Time In Situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of S


Our article have been published in J. Phys. Chem. Lett. Those results have been obtained during the M2 internship of Kinanti Aliyah. It is a collaborative work with the SOLEIL Synchrotron and MPQ lab (Université de Paris). 

DOI: acs.jpclett.0c00121

Abstract: Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a capping role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can be easily applied to a wide variety of synthesis strategies.

Plasmonic NPs Synthesis by colloidal chemistry


Selection of TEM images of Au or Au@Ag NPs with various morphology obtained in the team. The colors distinct series of nanocrystal: gold bipyramids of different size (purple), Au@Ag nanorods of varying shell thickness (red), Au@Ag bipyramids of varying shell length (green).

Shaping nanomaterials

Construction of nanoscale devices is a crucial step toward the sucess of nanotechnologies in a variety of fields. Although construction by addition of individual building blocks might appear impossible without using nanomachines, it can actually be carried out by simply exploiting the different magnitude of attractive and repulsive interaction forces at the nanoscale. For example, gravity is negligible for nanoparticles, but other forces become dominant and require the nanoparticles to be coated with selected molecules. Thus, one can simply let the solvent evaporate and wait the nanoparticles to organize into ordered structures without any intervention. Such strategy is one of the core of the concept of self-assembly.

Gold and silver nanoparticles

Plasmonic nanoparticles (Au and Ag) have been object of fascination since ancient time for the preparation of stained glass. Such elementary building block are extremly robust and their use in monuments stand the test of time. A not too far example from the laboratory is the "Sainte-Chapelle du Palais" at "l'île de la cité" in Paris (see image, wikipédia). This phenomenon, commonly witnessed by everyone, originates from the plasmonic properties of metallic nanoparticles. 


Optical properties of nanoparticles

The strong optical properties of nanoparticles (e.g. plasmonic or semiconducting) can be tuned across the visible to the mid infra-red range by modifying their size and shape. When such nanoparticles are organized in ensembles, collective properties are obtained that differ from those of individual particles and the resulting optical properties can be further tuned and even amplified. In particular, plasmon coupling in small gaps (1–10 nm) between plasmonic nanoparticles results in intense electric fields (i.e.,hot-spots) that can be exploited for many purposes, such as sensing, biomaterials, metamaterials design, switching devices, and so forth.

Use of light to study nanoparticles self assembly

We use UV/Vis spectrometry and X-ray scattering tecniques (SAXS) to study nanoparticles super-structures. The structural study of the material is the first step before understanding its overall properties and considering applications. SAXS is an experimental technique used to study the structural properties of materials and gives information on the size and orientation of the nanoparticles, their arrangement, the characteristic interdistances and the possible long-range organization. In a scattering experiment, ordered phases give diffraction signals that are called Bragg peaks. Analysis of such signals requires adapting standard methods of crystallography to the nanoscale, as the relevant length scale is much larger than the atomic scale. UV/Vis spectrometry is used complementary to measure the collective optical properties. Both techniques can be used in situ to study self assembly's pathways. 


Mesoporous materials

A mesoporous material is a material containing pores with diameters between 2 and 50 nm. We are devising materials containing a mesoporous architecture to enhance size and shape selectivity for guest molecules or to template nanoparticles synthesis. 


Kinanti Aliyah - 2019

Kinanti Hantiyana Aliyah earned her Bachelor of Science in Chemistry from Tohoku University, Japan (2017). She worked in Institute for Materials Research for her bachelor thesis, under supervision of Prof. Hitoshi Miyasaka synthesizing novel building blocks for donor-acceptor metal-organic frameworks.

Currently, she is in her second-year master Erasmus Mundus Joint Master Degree SERP+, working on thesis project about synthesis and characterization of anisotropic bimetallic nanoparticles in real time under supervision of Dr. Cyrille Hamon and Dr. Doru Constantin.

Additionally, believing education should be accessible to all, she co-founded and actively maintains an online-based knowledge-sharing platform for Indonesians (

Kinanti is now doing her PhD at the Paul Scherrer Institut (Switzerland)

Masa Johar

Masa Johar graduated from An-Najah National University, Palestine (2020),  with a bachelor's degree in Applied Chemistry. She joined University of Paris Saclay in September  2020 to start her master's degree within the Chemistry International Track program for two years.
Currently, she is doing her M1 internship on "Colloidal chemistry of plasmonic triangular nanoplatelets" under supervision of Prof. Cyrille Hamon at the Laboratory of Solid Physics (LPS). Her main motivation is to find the best protocol for synthesizing triangular gold nanoparticles.   
Finally, she is looking forward to being a highly skilled researcher enthusiastic about supporting advancements in the nanotechnology world, passionate about increasing knowledge to drive growth and needed improvements related to sustainable developments in Energy, Health and Environment.

Samantha ROQUE

Samantha Roque earned her Bachelor of Science in Chemistry (2017) and in Materials Science Engineering (2018) from Ateneo de Manila University in the Philippines. She worked on printable carbon composites and biosilica inks for perovskite solar cells under Erwin P. Enriquez, Ph.D. 
She is now doing her master's degree under the Erasmus Mundus Joint Master Degree SERP+. She is at present doing her internship on Anisotropic plasmonic-semiconductor nanocomposites for photocatalytic applications which is a joint project between the “Institut de Chimie Physique” and the “Laboratoire de Physique des Solides” supervised by Cyrille Hamon Ph.D. and ‪Mohamed Nawfal Ghazzal, Ph.D.  


Wajdi Chaâbani obtained his Ph.D. from the University of Technology of Troyes (France) and the University of Sciences of Sfax (Sfax, Tunisie) under the supervisions of Jérôme Plain and of Abdallah Chehaidar in July 2019. He was a postdoctoral researcher in IEMN Laboratory (Lille, France) from September 2019 to August 2020. He then joined the Laboratoire de Physique des Solides in Orsay (France) as postdoctoral researcher.

Currently, his interest focuses on self-assembling plasmonic nanoparticles in confinement. The nanostructuration will be resolved at the single supercrystal level using an innovative Small Angle X-ray Scattering (SAXS) setup developed on a synchrotron beamline.(SWING, @SOLEIL).



Emmanuel Beaudoin

Emmanuel Beaudoin is an Associate Professor in University Paris-Saclay. He obtained his PhD at the “Laboratoire de Physico-Chimie des Polymères” in « Université de Pau » in 2001, and his HDR (Habilitation à Diriger des Recherches) in « Université de Marseille » in 2014, the same year he has joined the Laboratoire de Physique des Solides. He is involved in physical and physico-chemical studies of nanostructured and hybrid polymeric materials. He is interested in the relationship between structure and physical properties of these materials, at rest and under strain. The main techniques he uses are Small Angles X-ray scattering (with laboratory equipment and synchrotron - ESRF, SOLEIL), optical microscopy, Differential Scanning Calorimetry, UV-vis spectroscopy and spectrofluorimetry.

Jieli Lyu

Jieli Lyu completed her M.S. degree at the Key Laboratory of Applied Surface and Colloid Chemistry of Shaanxi Normal University. She studied under the supervision of Prof. Junxia Peng and Prof. Yu Fang, and her main research topics were (1) synthesis and characterization of amphiliphic compounds; (2) formulation and performances of the emulsions; (3) emulsion-templated preparation of porous materials and their catalytic performance.

She started her PhD in october 2018. Her research interest focuses on nanomaterials with a multiscale organization as well as shedding light on the self-assemblies pathways using light scattering techniques. 



Patrick Davidson


After graduating with a chemical engineering degree from Ecole Supérieure de Physique et Chimie Industrielles de la ville de Paris, a PhD and an Habilitation à diriger des recherches, Patrick Davidson was appointed CNRS Research Director, in 2003, at Laboratoire de Physique des Solides of Université Paris-Sud in Orsay.

His research work focuses on the structural and physical properties of complex fluids such as molecular and polymer liquid crystals, colloidal suspensions and surfactant solutions. He has also recently been involved in the study of hybrid systems prepared by doping liquid-crystalline matrices with mineral nanoparticles. His favorite techniques are X-ray scattering, polarized-light microscopy, and magneto- and electro-optics. His research activity involves frequent contacts with chemists and theoretical physicists.

He is also presently in charge of the “Soft matter and biophysics” research axis of the LPS.


Marianne Impéror-Clerc

Marianne Impéror-Clerc has a permanent position at CNRS as ‘directrice de recherche’. She studied Physics at the ENS de Saint-Cloud (1986-1990) where she passed the ‘aggrégation de Physiques’ (1989) before obtaining her PhD (1992) and HdR ‘Habilitation à diriger des recherches’ (2007) at the Université Paris-Sud in Orsay.

Her research is devoted to structural studies of self-assembled systems and her favorite experimental tool is Small Angle Scattering using X-rays or neutrons (SAXS and SANS). 

For example, for mesoporous materials, the control of the architecture of the porosity allows to optimize transport properties. Main goal is to control the nanostructure during the synthesis of such materials. For this, time-resolved scattering experiments allow to follow in real time the formation of the materials and to elucidate the mechanisms involved. Her research thus lies at the frontier between Soft Matter and Materials Chemistry.

She is alos regularly involved in activities about Crystallography for education and the general public (






We are all working in the team MATRIX at the Laboratoire de Physique des Solides (LPS) in Orsay. The LPS is part of the vibrating Paris region fostering interaction with fellow researchers and visiting scientist.

Cyrille Hamon

Cyrille Hamon obtained his Ph.D. from the University of Rennes 1 (France) under the supervision of Pascale Even-Hernandez and Valérie Marchi in 2013. He was a postdoctoral fellow in Luis Liz-Marzán laboratory (CIC Biomagune, Spain) from 2014 to 2016. He then joined the laboratories of Gaëlle Charron and Pascal Hersen (MSC, Université Paris 7) from 2016 to 2017.

He has been appointed in 2017 with a permanent CNRS position in the Laboratoire de Physique des Solides in Orsay.

His current interest focuses on devising new plasmonic architectures for sensing and catalytic applications.




Doru Constantin

Doru Constantin studied physics at the University of Bucharest and at the Ecole Normale Supérieure de Lyon and was awarded his PhD at the latter institution in 2002. After a Marie Curie Individual Fellowship at the University of Goettingen he obtained a permanent CNRS position at the LPS in 2005.

His activity revolves around the characterization of soft matter systems, often composed of an anisotropic medium doped with nanoparticles.

These studies are performed using modern, synchrotron-based techniques, such as time-resolved, dynamic, or surface-sensitive X-ray scattering and involve a substantial amount of modelling and analysis, using statistical theory or continuum media models.

 In 2021, Doru joined the Institut Charles Sadron in Strasbourg.